If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x=72
We move all terms to the left:
3x^2+4x-(72)=0
a = 3; b = 4; c = -72;
Δ = b2-4ac
Δ = 42-4·3·(-72)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{55}}{2*3}=\frac{-4-4\sqrt{55}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{55}}{2*3}=\frac{-4+4\sqrt{55}}{6} $
| a-5+6a=-13+8a | | 12+2x=-16x^2+24x+6 | | 599=7*84+n | | x^{2-x-2=0} | | 23x+6=12x-4 | | (2x-24)+54=180 | | 6n+2=184 | | b+b+b=12 | | 6-2(4x+5)=28 | | 1=-(x-2.5)-4x | | 34=-7x+6 | | 6m^2-32=4m | | -5=b-3 | | -27=-3(-10+n) | | (900-x)+560=1150 | | 2q+397=843 | | 29-q=13 | | 51=8n+11 | | 31=9d+4 | | (60-6x)=(120-46x) | | 28+2x=33 | | p20=p-27 | | 12(p-4)=6 | | 28x-150=486 | | 0.09d-0.14=0.67 | | 28+2x=30 | | −377=x−1,000= | | 28+2x=60 | | k+6=-19 | | 28+2x=16 | | 210=6b+18 | | 0.75(24+x)=24 |